

Improvements in Crack Detection of Critical Rotorcraft Components

Delivery Order No IA056

December 7, 2004

Tim Gray tgray@cnde.iastate.edu (515) 294-7743 Mike Garton mike@iastate.edu (515) 294-1429 Lisa Brasche Ibrasche@cnde.iastate.edu (515) 294-5227

IOWA STATE UNIVERSITY
OF SCIENCE AND TECHNOLOGY

RITA Project

Program Team:

- ISU: Lisa Brasche, Mike Garton, Tim Gray
- Bell: Ed Hohman, Sohan Singh
- Boeing: Ken Dabundo, Tim De Hennis, Jim Kachelries

- Kaman: Paul Keary
- **Sikorsky**: Cliff Smith, John Wang
- RITA: Rande Vause
- FAA Technical Monitor:
 Dy Le

Objectives

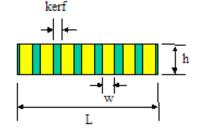
- To evaluate the potential of phased array technology for typical rotorcraft applications including contact and immersion techniques
- To compare UT detection to advanced eddy current detection in those situations in which surface crack detection is relevant
- To compare advanced methods developed in this program to current techniques such as fluorescent penetrant inspection
- To develop a "lessons learned" document that provides issues in implementing phased array ultrasonic techniques for rotorcraft applications

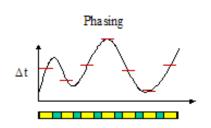
Phased Array Instrument

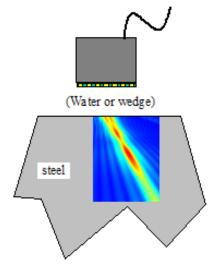
- RD-Tech OmniScan MX portable PA instrument
 - 16/128 system
 - Acquired 1/04
 - Similar system currently in use at Bell
- "Off-the-shelf" probes limited to linear arrays
- Supplied focal law calculators address only conventional applications
 - Planar surfaces
 - Angle beam (wedge)

Phased Array Application

Phased Array Modeling

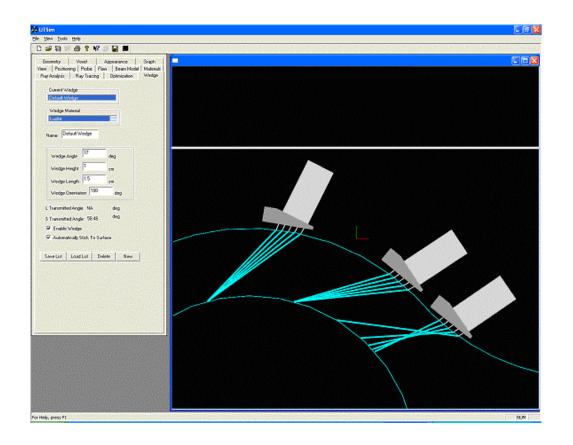

- Linear phased arrays
- Contact wedge or immersion
- Focal law tool using CAD file
- Integrate PA into full UT measurement model, including flaw response models


Applications


- Sensitivity studies
- Focal law optimization

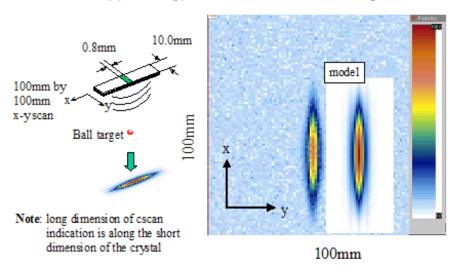
Phased Array Model Schematic

Linear, rectangular elements

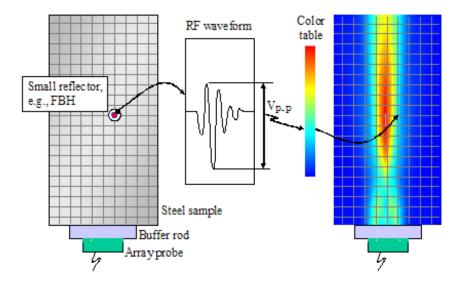


Phased Array – Focal Laws

- CAD representation of component
- UTSim ray-tracing application to define delays for individual elements
- Complex shapes need "nonstandard" focal laws



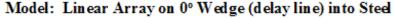
Phased Array Modeling

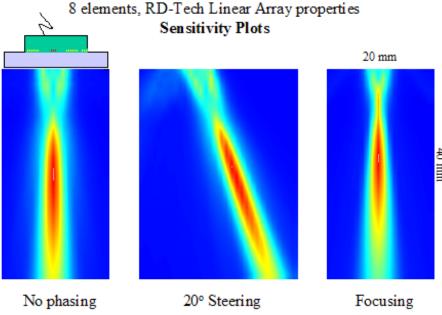

Model and Experimental C-Scan from Ball Target

Single crystal from RD-Tech linear array 0.8(x) x 10.0(y) mm element, 100mm water path

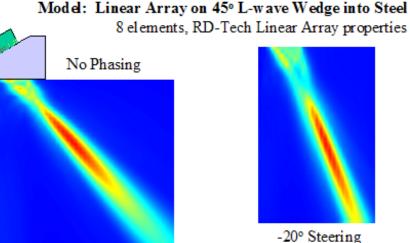
Model comparison for single PA probe element

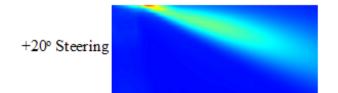
Sensitivity Plots Definition





Phased Array Modeling Examples





Normal incidence wedge

45° L-wave wedge



Progress

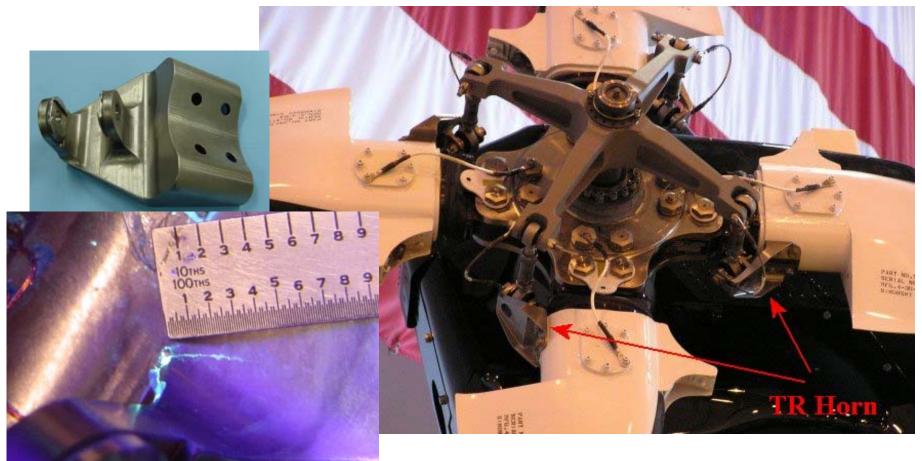
- Subcontract in place January 2004
- Bi-weekly conference calls among technical team
- Three generic inspection concerns identified and samples provided by OEMS

Kaman

Sikorsky

Bell

Progress


- Generic inspection features include:
 - Cracks around cylindrical IDs, such as might occur in lugs and other connection fittings
 - Defects in tubular components, particularly in electron beam weld areas
 - Cracks in flat surfaces such as mounts and other attachment fittings

Sikorsky

- Tail rotor horn
- Cracks near base of attachment fittings

Kaman

Cracks in fillet region of attachment fittings

Boeing

- Pitch housing
- ID cracks in lugs (EDM notches in place)
- Additional applications on swivel bearings

Bell

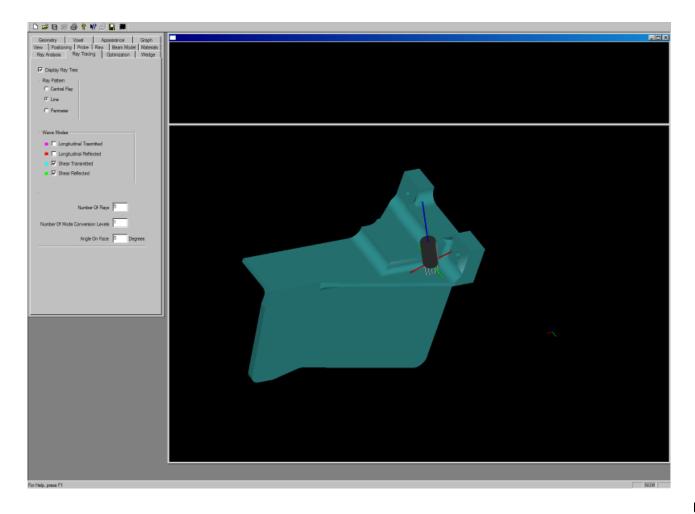
- Rotor shaft
- Replace current "delta" UT technique on EB weld
- Productivity issue

Progress

- Site visit at Sikorsky and Kaman, June '04
 - Attended by
 - Bell Ed Hohman
 - Boeing Tim DeHennis
 - Kaman Paul Keary
 - Sikorsky Cliff Smith, John Wang
 - RITA Randy Vause
 - ISU Lisa Brasche, Mike Garton, Tim Gray
 - Established experimental plan
 - Demonstrated portable PA instrument

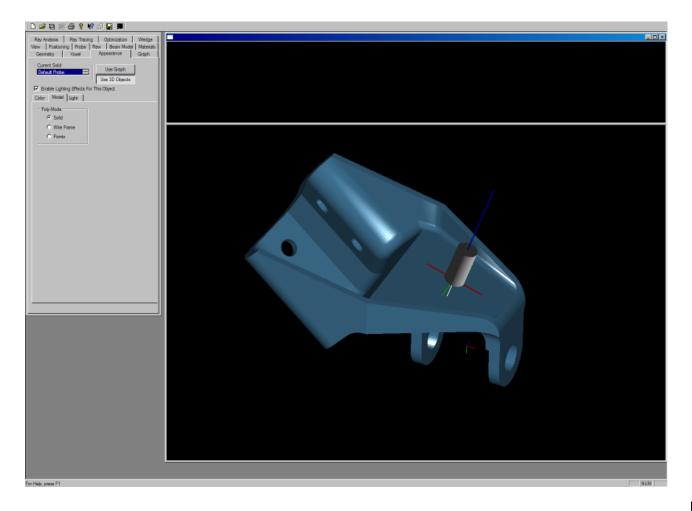
Experimental Test Plan

- Establish experimental test plan and evaluation criteria for inspection optimization.
 - Cracks below flat surfaces such as mounts and other attachment fittings
 - Anticipate probes/wedges are available COTS
 - Will use (Ti) tail rotor horn (Sikorsky) and (Al) motor mount (Kaman)
 - Flaw size: 30 x 15 surface breaking crack
 - OEMs to provide information on crack orientation to assist in wedge/probe design
 - Cliff to look for precracked specimen
 - Cracks around cylindrical IDs, such as might occur in lugs and other connection fittings
 - Anticipate probes/wedges will require design optimization
 - Will use (AI) pitch housing (Boeing), (steel) bearing (Boeing), and (steel) rod-end bearing (Boeing)
 - Flaw size: 30 x 15 EDM notch (smallest notch size with other larger sizes also present)
 - Defects in tubular components, particularly in electron beam weld areas
 - Anticipate probes will require design optimization
 - Immersion application
 - Will use (steel) EB welded shaft (Bell)
 - Flaw size: 25 mil x 25 mil EDM notch; conical flaws of 11 mils (FBHeq)
 - More samples are available with conical defects



Progress Summary

K-Max Engine Mount



Progress Summary

Sikorsky Tail Rotor Horn

Progress Summary

- Application examples selected from OEM input
- Phased array instrument acquired
- Site visit (Sikorsky & Kaman) led to Experimental Plan
- PA probes for 1st application ordered
- CAD files for UT modeling input, focal law definition
- Preliminary modeling/focal law computations for inspection design, 1st application

Outputs

- Jan 05 Inspection demonstration for first component. (planned for Bell - Fort Worth)
- Feb 05 Annual report.
- Aug 05 Inspection demonstration for components two through four.
- Sept 05 Field demonstration of four components.
 (planned for Boeing Philadelphia)
- Nov 05 Final meeting (planned for Ames)
- Dec 05 Lessons learned document incorporated into FAA draft final report.
- Jan 06 FAA Final Report in approved format.

Project Schedule

ID		Task Name	% Complete	Duration	Start	Finish	
	0	Tackitanio	70 Complete	Baration	Ctart	1 1111011	2004 2005 2006
1	•	Improvements in Crack Detection of	26%	627	Mon 9/8/03	Tue 1/31/06	Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Q
'		Critical Rotorcraft Components	26%	days?	WIOTI 9/6/03	Tue 1/31/06	
2		Contractual process	100%	88 days?	Mon 9/8/03	Wed 1/7/04	- I
		Contractual process	100 /0	oo days:	141011 370703	1104	
3		Delivery order award to ISU	100%	1 day?	Mon 9/8/03	Mon 9/8/03	- <u>L</u>
		Delivery order award to 100	10070	i day:	1011 3/0/03	10011 3/0/03	
4		Subcontract negogiations	100%	70 days?	Wed 10/1/03	Tue 1/6/04	-
"		Cubcontract negogiations	10070	70 days.	VVCa 10/1/00	140 170704	
5		Subcontract in place with RITA	100%	1 day?	Wed 1/7/04	Wed 1/7/04	1/7
	_	Cubcontract in place with KITA	10070	i day:	Wed 1/1/04	Wed 1/1/04	· · · · · · · · · · · · · · · · · · ·
6		Technical program	19%	522	Mon 2/2/04	Tue 1/31/06	
		recinical program	1976	days?	WIOTI 2/2/04	146 1/31/00	
7		Program planning discussion	100%	53 days?	Mon 2/2/04	Wed 4/14/04	-
'	V	including assessment of components	100 /0	JJ days:	1011 2/2/04	VVEG 4/ 14/04	
		to be used in the study.					
		to be used in the study.					
8	- A	Provide detailed work plan to FAA.	100%	1 day?	Thu 4/15/04	Thu 4/15/04	4/15
	V 9	1 Tovide detailed work plan to 170 t.	10070	r day:	1114 4/ 10/04	1110 4/10/04	
9	- A	Complete discussion of typical	100%	11 days?	Fri 4/16/04	Fri 4/30/04	-
9	*	components and select one from	100 /0	11 days:	1114/10/04	1114/30/04	
		each OEM for inspection					
		development.					
10		Establish experimental test plan and	100%	21 days?	Mon 5/3/04	Mon 5/31/04	-
10	_	evaluation criteria for inspection	10070	Zi days:	1011 3/3/04	10011 3/3 1/04	
		optimization.					
11		Design/acquire samples for use in	100%	21 days?	Mon 5/3/04	Mon 5/31/04	- 🛓
''		inspection evaluation with fabrication	10070	Zi days:	1011 0/0/04	1011 0/0 1/04	
		to complete by the OEMs as					
		necessary.					
12		Complete inspection design including	100%	44 days?	Tue 6/1/04	Fri 7/30/04	-
		probe(s) for selected components.	10070	i i dayo.	140 0/ 1/01	1111700701	
		Initiate purchase of necessary					
		probes.					
13		Complete transducer acceptance	0%	8 wks	Mon 8/2/04	Fri 9/24/04	
		testing and characterization	3.0	55		5.2 5 !	
14		Initiate inspection optimization using	0%	12 wks	Mon 8/2/04	Fri 10/22/04	- _
' '		combined empirical and model based					
		approaches for first component.					
		P.F. S.					
15	Tit.	Complete inspection design and	0%	71 days?	Mon 10/25/04	Mon 1/31/05	
		demonstrate to team members for					CENTER
		first component.					FOR CE STATE
	_	<u>'</u>					

Benefits

- PA technique allows more flexible approach to inspection design for complex components
 - Variation of inspection parameters angles, focusing, etc.
 - Tolerance variation of components
- Reduced time and effort to implement new inspection procedures
 - Initial cost is higher than conventional UT
 - Flexibility of PA focal laws allow application to variety of geometries, etc.
- Project will provide guidance to OEMs for PA application to new problems
 - Ease application of new phased array technology
- Software tool for inspection design & focal law definition will be available to OEMs (as I/U CNDE Sponsors)

